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Abstract. We discuss matrix elements of the strangeness changing vector current using their relation, due to
analyticity, with πK scattering in the P -wave. We take into account experimental phase-shift measurements
in the elastic channel as well as results, obtained by the LASS collaboration, on the details of inelastic scat-
tering, which show the dominance of two quasi-two-body channels at medium energies. The associated form
factors are shown to be completely determined, up to one flavor symmetry breaking parameter, imposing
boundary conditions at t= 0 from chiral and flavor symmetries and at t→∞ from QCD. We apply the re-
sults to the τ →Kπντ and τ →Kππντ amplitudes and compare the former to recent high statistics results
from B factories.

PACS. 11.55.Fv; 11.30.Rd; 11.30.Hv; 13.35.Dx

1 Introduction

Decays of the τ to hadrons with strangeness S =−1 can
be used to determine basic parameters of the standard
model such as Vus and the mass of the strange quark (see,
e.g., [1, 2] for recent updates). The considerable improve-
ment in statistics brought in by Babar and Belle should
translate in the near future into much more precise meas-
urements of matrix elements of currents with S =−1 than
possible at present. In this paper, we re-consider in some
detail the relations between the Kπ matrix element of the
strangeness changing vector current and Kπ scattering in
the P -wave. We shall follow a method applied some time
ago by Donoghue, Gasser and Leutwyler (DGL [3]) to the
ππ matrix element of the S = 0 scalar current (which is not
directly accessible to experiment, since the Higgs boson is
not very light). For this method to operate, it is necessary
that inelastic scattering can be approximated in terms of
a finite number of two-body or quasi-two-body channels
in a sufficiently large energy range E � E0. Then, impos-
ing a limited number of constraints at E = 0 from chiral
symmetry and at E� E0 from asymptotic QCD, one can
determine the form factor from the T -matrix. In practice,
this is done by solving a set of coupled Muskhelishvili–
Omnès (MO) integral equations, which are consequences
of analyticity properties of the form factors and of time-
reversal invariance.
Recently, this method was implemented in the case of

the Kπ scalar form factor [4]: in this case, inelasticity
in the S-wave is saturated by the Kη and Kη′ channels.
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One motivation for our interest in the vector form fac-
tor is the availability of good experimental data from the
LASS collaboration on both elastic [5] and inelastic Kπ
scattering [6–8] in the P -wave. In particular, these works
show that in an energy range E � 2.5 GeV, inelasticity is
dominated by two quasi-two-body channels:K∗π and Kρ.
This makes it possible to probe the DGL method by com-
paring its results with experimental data from τ decays.
The spectral function for τ →Kπντ can be described, of
course, by a simple Breit–Wigner ansatz in the vicinity
of the K∗(892) resonance, where scattering is nearly per-
fectly elastic. Away from the resonance, however, this is no
longer true. In the energy region E�MK∗ the spectral
function gets dominated by the scalar component [9] (as
it is less suppressed by phase-space than the vector com-
ponent). In the energy region E �MK∗ it is important
to correctly treat inelastic effects. Another motivation for
this work is in view of applications to the three-body non-
leptonicB decaysB→Kππ. In kinematical configurations
where the kaon and one pion are quasi-aligned, factoriza-
tion can presumably be justified [10], and the amplitude
gets expressed in terms of Kπ vector and scalar form fac-
tors [11].1

The plan of the paper is as follows. After introduc-
ing some notation for the form factors involved we dis-
cuss the construction of the T -matrix from fits to the ex-
perimental πK scattering data. Three-channel unitarity
is enforced using the K-matrix method, and proper fla-

1 In the context of B decays, the usefulness of appealing to
descriptions more sophisticated than Breit–Wigner combina-
tions for scalar form factors was pointed out in [12].
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vor symmetry and low energy behavior are enforced start-
ing from a resonance chiral Lagrangian. Next, we intro-
duce the MO integral equations satisfied by the form fac-
tors and discuss their resolution. This necessitates mak-
ing a plausible ansatz for the T -matrix at high energies.
The ansatz determines the number of conditions to be im-
posed in order to determine the form factors from solv-
ing the integral equations. We shall use three conditions
at E = 0 and one asymptotic condition. Finally, the re-
sults are displayed and compared with recent experimental
measurements.

2 Strangeness changing vector current form
factors

The object that will mainly interest us is the Kπ matrix
element of the strangeness changing vector current

〈
K+(pK)|ūγ

µs|π0(pπ)
〉

= fK
+π0

+ (t) (pK +pπ)
µ+fK

+π0

− (t) (pK −pπ)
µ ,

(1)

with t = (pK −pπ)2 and we shall denote the vector form
factor as

H1(t)≡ f+(t) =
√
2fK

+π0

+ (t) . (2)

As we shall discuss below Kπ inelastic scattering in the
P -wave is dominated by two quasi-two-body channels:
K∗π and ρK. This leads us to introduce the associated vec-
tor current matrix elements

〈
K∗+(pV , λ)|ūγµs|π

0(pπ)
〉
= εµναβe

∗ν(λ)pαV p
β
πH2(t) ,〈

ρ0(pV , λ)|ūγµs|K
−(pK)

〉
=−εµναβe

∗ν(λ)pαV p
β
KH3(t)

(3)

(we have chosen different signs in the definition of H2 and
H3 such that only plus signs appear in subsequent equa-
tions). In the following, isospin symmetry breaking will be
neglected. From the isospin decomposition of K+π0 it fol-
lows that

〈
K+π0|ūγµs|0

〉
=

√
1

3

〈
[Kπ] 1

2
|ūγµs|0

〉
, (4)

and analogous relations hold for K∗π, Kρ. In order to de-
rive the unitarity equations satisfied by the form factors
H1, H2 and H3 it is convenient to focus on one of the spa-
tial components of the vector current, say µ = 3, and go
to center-of-mass (CMS) frame of the meson pair. In this
frame, the current matrix elements introduced above can
be expressed as follows:

〈
[Kπ] 1

2
|ūγ3s|0

〉
=
√
6 cos θ0qKπ(t)H1(t) , (5)

where qKπ is the modulus of the CMS momentum of the
meson pair and θ0 is the polar angle of the momentum

vector with respect to a fixed frame. Similarly, the matrix
elements that involve one vector meson read

〈
[K∗(λ)π] 1

2
|ūγ3s|0

〉
= iη∗

√
3

2
sin θ0

√
t qK∗π(t)H2(t) ,

〈
[ρ(λ)K] 1

2
|ūγ3s|0

〉
= iη∗

√
3

2
sin θ0

√
t qρK(t)H3(t).

(6)

Here, η is an arbitrary phase that can be introduced in the
definition of the vector meson polarization vector

e∗(λ=±1) =
η∗
√
2

⎛

⎝
−λ cos θ0 cosφ0− i sinφ0
−λ cos θ0 sinφ0+i cosφ0

λ sin θ0

⎞

⎠ ,

(7)

(θ0, φ0 being the polar angles of the vector meson momen-
tum). In the following, we shall set iη∗ = 1. We have also
taken the following convention for the Levi-Civita tensor:

ε0123 = 1 . (8)

The explicit dependence on θ0 displayed above in (5) and
(6) indicates that these matrix elements concern the angu-
lar momentum state J = 1 of the meson pair.

3 Kπ scattering in P -wave with n-channel
unitarity

3.1 Experimental situation

Detailed partial-wave analysis of Kπ→Kπ scattering (in
the energy range E � 2.5 GeV) have been performed based
on high statistics production experiments Kp→ KπN
in [5, 13]. The LASS collaboration has also performed pro-
duction experiments K−p→K 2πN and K−p→K 3πN
[6–8], which provide information on inelastic Kπ scatter-
ing. These, however, are not as precise as for elastic scatter-
ing and mainly concern resonance properties in the various
partial waves. In the S-wave, Kπ scattering is elastic to
a good approximation up to theKη′ threshold [5, 13], indi-
cating that Kη′ is the main inelastic channel. Inelasticity
in the P -wave starts at somewhat smaller energy than in
the S-wave and the results of [6, 7] suggest that K∗π is the
main inelastic channel, as it is enhanced by two resonances
K∗(1410) and K∗(1680) (following the nomenclature of
the PDG [14]). The latter resonance was observed to couple
essentially to three channels: Kπ, K∗π as well as Kρ [14].
This indicates that Kρ should be also taken into account
as a significant inelastic channel in the P -wave although its
coupling to K∗(1410) was found to be small. The experi-
mental results on the branching ratios of theK∗(1410) and
K∗(1680) are collected in Table 1.
The Kπ→Kη amplitude was studied in [8] and found

to be very small in the P -wave and not to display any
resonant effect. The coupling of Kη′ to resonances with
JPC = 1−− is proportional to the sine of the mixing angle
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Table 1. Experimental decay branching ratios (in percent
units) for the resonancesK∗(1410) andK∗(1680) quoted in the
PDG

Kπ K∗π Kρ

K∗(1410) 6.6±1 > 40 < 7

K∗(1680) 38.7±2.5 29.9+2.2−4.7 31.4+4.7−2.1

and thus should also be suppressed. These results suggest
that a plausible description ofKπ scattering in the P -wave
with n-channel unitarity can be performed (up to ener-
giesE � 2.5 GeV) by retaining as inelastic channels the two
quasi-two-body channels with one vector meson: K∗π and
Kρ.

3.2 Lagrangian for vector resonances and
pseudo-scalar mesons

It is useful to express the resonance contribution to scatter-
ing in terms of coupling constants that are known in other
contexts and it is also useful to impose chiral constraints
at low energy. For this reason, let us start from the follow-
ing Lagrangian, which was used in the context of the chiral
expansion [15–17]. It includes the nonet of the light vector
mesons encoded in a matrix Vµ and the light pseudo-scalars
encoded in a chiral matrix uµ and involves two coupling
constants gV and σV :

L(1) = L(1)K +L
(1)
V +L

(1)
σ , (9)

with

L(1)K =
−1

4
tr (VµνV

µν −2M2V VµV
µ) ,

L(1)V =
−i

2
gV tr (Vµν [uµ, uν ]) ,

L(1)σ =
1

2
σV ε

µνρσtr (Vµ{uν, Vρσ}) , (10)

and Vµν =∇µVν −∇νVµ. In [16, 17], for example, the fol-
lowing values are quoted for the coupling constants (based
on the extended NJL model):

gV � 0.083 , σV � 0.25 , (11)

which should serve as a guide as to the orders of magni-

tudes. Let us denote an excited vector resonance by V
(n)
µ ,

we can write down the following coupling terms:

L(n)V =
−i

2
gV (n) tr (V

(n)
µν [uµ, uν ]) ,

L(n)σ =
1

2
σV (n) ε

µνρσtr (V (n)µ {uν, Vρσ}) . (12)

These terms do not involve the quark mass matrix and,
therefore, have exact SU(3) flavor symmetry. Experimen-
tal results onK∗ resonances indicate that flavor symmetry
can sometimes be substantially broken, as in the case of the
K∗(1410) (see Table 1). We do not try to write down all
possible Lagrangian terms that break flavor symmetry, but

eventually we shall implement such effects at the level of
the fits. We also do not consider explicitly the possibility
of many more terms that involve further derivatives act-
ing on the vector or on the chiral fields. Again, such terms,
which give rise to polynomial energy dependence, may be
implemented phenomenologically as “background” contri-
butions in the fits.

3.3 Resonance contributions to Kπ scattering

Let us recall the constraints introduced by the conservation
of parity. The Kπ system, at first, in the P -wave has par-
ity −1. The action of the parity operator on a state formed
from a vector meson and a pseudo-scalar meson involves
the helicity [18, 19],

P|V (λ)P 〉J = (−)
J−1|V (−λ)P 〉J . (13)

For J = 1, the following combination is the only one that
has negative parity:

ψ− =
1
√
2
(|V (1)P 〉J=1−|V (−1)P 〉J=1) . (14)

We shall need the partial-wave expansion of the scatter-
ing amplitudes in a situation where the initial state CMS
momentum has polar angles θ0, φ0 and the final state has
polar angles θ, φ [18, 19]

〈V (λ)P |T |Kπ〉= 16π
∑

J,M

(2J+1) (qV P qKπ)
J

×
〈
V (λ)P |T J |Kπ

〉
D∗JM,λ(φ, θ)D

J
M,0(φ0, θ0) ,

〈V (λ)P |T |V ′(λ′)P 〉= 16π
∑

J,M

(2J+1) (qV P qV ′P )
J

×
〈
V (λ)P |T J |V ′(λ′)P

〉
D∗JM,λ(φ, θ)D

J
M,λ′(φ0, θ0) .

(15)

We have factored out explicitly the angular momen-
tum barrier factors in the definition of the partial-wave
T -matrix elements: this is necessary for non-diagonal
matrix elements in order to ensure good analytical be-
havior for the partial-wave T -matrix [20]. For simpli-
city, we also define the diagonal elements in the same
manner e.g.

〈Kπ|T |Kπ〉= 16π
∑

J,M

(2J+1) (qKπ)
2J
〈
Kπ|T J |Kπ

〉

×D∗JM,0(φ, θ)D
J
M,0(φ0, θ0) . (16)

Let us number the three relevant channels in our construc-
tion as

1−→Kπ , 2−→K∗π , 3−→Kρ , (17)

Using the Lagrangian introduced above (10) and (12) it
is not difficult to compute the resonance contributions to
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the various T -matrix elements. The resulting amplitude
can be written in a compact form that displays the usual
resonance structure,

T 1ij,r =
∑

n

gr(n, i)gr(n, j)

M2n− s
, (18)

with

gr(n, 1) =
gV (n)√
16π

(√
s

Fπ

)2

gr(n, 2) =
σV (n)√
16π

√
2s

Fπ
(1+ δn1)

gr(n, 3) =
−σV (n)√
16π

√
2s

Fπ
. (19)

The relations between channel 2 and channel 3 ma-
trix elements are consequences of exact flavor symme-
try as implemented in the Lagrangians (10) and (12).
The energy dependence of these effective coupling con-
stants is reliable only for small values of s (s�M2K∗)
where chiral symmetry constraints (as encoded in the
construction of the Lagrangian) are relevant. In prac-
tice, we shall implement a simple cutoff function by
replacing

√
s−→

√
s
(
1+ bn

√
s

Mn

)

1+ bn
s
M2n

(20)

in (19). This cutoff function has the correct behavior at
small s and effectively replaces

√
s by the resonance mass

Mn otherwise.

3.4 K-matrix fits to the experimental data

We may implement n-channel unitarity in a simple way,
using the K-matrix method (e.g. [21]). Starting from
a real, symmetric K-matrix we define the J = 1 T -matrix
in the following way (suppressing the J superscript):

T = (1− iKΣQ2)−1K , (21)

where Q2 and Σ are diagonal matrices

(Q2)ij = δijq
2
i , Σij = δij

2qi√
s
, (22)

qi being the CMS momentum in channel i. Indeed, it not
difficult to verify that the S-matrix , which is defined as
follows:

S = 1+2i
√
ΣQT Q

√
Σ (23)

is unitary

SS† = 1 (24)

and encodes the proper J = 1 angular momentum barrier
factors.

3.4.1 A first simple fit

The most detailed experimental results concern the Kπ
elastic channel. We used the results of [5] on the ampli-
tudes K−π+→K−π+ in the energy range E ≤ 2.5 GeV
and those of [13] on the isospin 3/2 amplitude. Let
us first perform a simple fit including just three reso-
nances in the K-matrix, i.e., we set Kij = T

1
ij,r using

the formulas (18) and (19). We find a qualitatively ac-
ceptable result (see Fig. 1) with the following resonance
parameters:

Mn gV (n) σV (n)
0.894 0.0714 0.0989
1.719 0.0103 −0.1857
2.247 0.0126 −0.3069

(25)

(masses are in GeV and the coupling constants are dimen-
sionless). In this fit we have taken bn =∞ (see (20)) i.e.√
s is replaced by Mn. This fit does find a resonance cor-
responding to K∗(1680) in addition to the K∗(892) but
prefers to locate the third resonance at a higher energy

Fig. 1.K-matrix fit to theKπ→Kπ data of [5] with three res-
onances. aP is the modulus of the K

−π+→K−π+ amplitude
and ΦP is the phase
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rather than at 1.4GeV. Obviously, though, the energy re-
gion between 1 and 1.5 GeV is where the data are not very
well described (the overall χ2/dof = 7.4).

3.4.2 More sophisticated fits

Including just one more resonance does not improve the
situation very much. In order to obtain significantly bet-
ter fits we shall include a fourth resonance in addition to
non-resonant background terms. There are many physical
sources for such terms. We have seen, for instance, that
the coupling constants may carry energy dependence. In
addition, we expect contributions associated with the left-
hand cut, i.e. arising from meson exchanges in the crossed
channels. We parametrize such contributions in the follow-
ing, simplistic, way:

Kback11 =
a1s

1+ s3

Kback12 =
s(a2+a3s)

1+ s3

Kback13 =
a4s

1+ s3
. (26)

For the other K-matrix elements we do not introduce any
background dependence. We have tried many possibilities
but, clearly, the amount of experimental data is insuffi-
cient for probing in detail all the matrix elements of the
K-matrix, so one must make admittedly arbitrary simpli-
fying assumptions. We found that setting non-zero back-
ground terms for K11 K12 and K13 is the most economic
way (in terms of number of parameters) to achieve a good
fit. In addition to the elasticKπ data, we try to reproduce
the constraints on the inelastic channels in the resonance
regions (see Table 1). These data imply strong flavor sym-
metry violation in the region of the K∗(1410) resonance.
We account for this fact by relaxing the symmetry relation
gr(n, 3) =−gr(n, 2) (see (19)) for n= 2. Instead of this re-
lation, we suppress the coupling to channel 3 (i.e. Kρ ) by
simply setting

gr(n, 3) = 0 , (27)

when n= 2.
Altogether, this fit contains 16 parameters and allows

for a rather satisfactory fit to the Aston et al. data, which
has a χ2/dof � 1.8. We note that the fourth resonance
present in this fit effectively acts essentially as an addi-
tional source of background at lower energies: it should
not necessarily be interpreted as a true physical resonance
(in fact no corresponding resonance is listed in the PDG).
The numerical results for the best fit parameters are col-
lected in Table 2. One observes that the values of gV (1)
and σV (1) are in reasonable agreement with the ENJL pre-
dictions from [16, 17]. Figure 2 shows the comparison of
the fit results with the experimental data. The improve-
ment with respect to the result of the simpler fit shown
in Fig. 1 is obvious, particularly in the energy region [1,1.4]
GeV. Moreover this fit is able to reproduce, qualitatively
at least, the experimental results concerning the inelastic
channels recalled in Table 1. This is illustrated in Fig. 3,

Table 2. Results for the fit parameters concerning the four res-
onances and the background as described in Sect. 3.4.2

n Mn gV (n) σV (n) an

1 0.8962 0.72820×10−1 0.26080 3.3906
2 1.3789 0.52523×10−2 –0.56075 18.373
3 1.7300 0.69365×10−2 –0.21774 –9.2048
4 2.2739 0.12044×10−2 –0.29360 2.8318

Fig. 2. K-matrix fit to theKπ→Kπ data of [5] with four res-
onances plus background, as described in Sect. 3.4.2

which shows the moduli of the transition S-matrix elem-
ents and, for the elastic channel 1−S11 (the cross-sections
are proportional to the squares of these quantities). Indeed,
the figure shows that in the energy region corresponding to
the K∗(1410) the matrix element S12 shows a clear reson-
ance peak while S13 shows no peak. In the energy region of
theK∗(1680) resonance these two matrix elements display
peaks of the same height (this was imposed as a constraint
in the fit) and the peak in the elastic channel is slightly
higher.
In the very small s region, finally, our T -matrix is ex-

pected to be qualitatively reasonable but certainly not very
accurate because of the lack of constraints from experimen-
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Fig. 3. Results from the fit described in Sect. 3.4.2 concerning
the inelastic S-matrix element moduli |S12| and |S13| as well as
the elastic matrix element modulus |1−S11|

tal data in the threshold region. The πK scattering length,
for instance, is found to be

a
1/2
1 = 0.025 , (28)

which has the correct order of magnitude but is slightly

larger than the result from ChPT (at order p6) [22]: a
1/2
1 =

0.018.

4 The Kπ vector form factor from n-channel
MO equations

4.1 Unitarity equations

The Muskhelishvili–Omnès equations derive from the fact
that, firstly, each of the form factors H1(t), H2(t) and
H3(t) satisfy an unsubtracted dispersion relation because
they are analytic functions in the variable t except for
a right-hand cut2 [23] and they decrease for t→∞ faster
than 1/t. Secondly, one can express the imaginary parts of
the form factors in terms of T -matrix elements using time-
reversal invariance. Let us briefly repeat the derivation in
the case of a scalar operatorO that is T -invariant

T OT −1 =O . (29)

We consider the imaginary part of the matrix element be-
tween the vacuum and a state |m〉, which we take to be an
“out” state

2iIm out〈m|O|0〉= out〈m|O|0〉− out〈m|O|0〉
∗ , (30)

Using the fact that T is antiunitary and transforms an
“out” sate into an “in” state, it is not difficult to transform

2 In reality, the form factors H2 andH3 could display anoma-
lous thresholds since they involve an unstable particle. We ig-
nore this possibility in our analysis.

the second term on the right-hand side in (30) and recover
the usual unitarity expression for the imaginary part

Im out〈m|O|0〉=
1

2

∑

n

T ∗mnout〈n|O|0〉 . (31)

In reality, we shall use operators that carry space-time in-
dices and thus are not T -invariant. It is however easy to
see that the T -variation of the operator is compensated by
the T -variation of the momenta pi in the state |m> such
that (31) remains valid for the form factors. For a given
energy of the state |m〉out a finite number of states |n〉out
contribute to the sum in the right-hand side (Watson’s
theorem [24] follows if the energy is lower than the first
inelastic threshold). If we truncate the summation in (31)
and insert the imaginary parts into the dispersion relations
we obtain a closed set ofMO integral equations for the form
factors.

4.2 Application to Kπ, K�π, ρK vector form factors

We start from the general expression (31), apply it to the
operator ūγ3s and retain three states in the sum:Kπ,K∗π
and ρK. We then use the formulas (5) and (6) and the
partial-wave expansions (15) of the T -matrix elements and
compute the phase-space integrals. As expected, only the
J = 1 partial wave contributes, and after a small calcu-
lation the unitarity equations for H1(t), H2(t) and H3(t)
are obtained. They can be written as follows, in matrix
form:

Im

⎛

⎝
H1
H2
H3

⎞

⎠= τ−1T ∗Q2Στ

⎛

⎝
H1
H2
H3

⎞

⎠ , (32)

where T is the 3×3 J = 1 T -matrix, the diagonal matri-
ces Q2 and Σ are defined in (22) and τ is also a diagonal
matrix:

τ = diag (1,
√
t,
√
t) . (33)

The MO integral equation set then is derived by combin-
ing (32) with the unsubtracted dispersion relations satis-
fied by the form factors

⎛

⎝
H1(t)
H2(t)
H3(t)

⎞

⎠=
1

π

∫ ∞

(mK+mπ)
2

dt′

t′− t
Im

⎛

⎝
H1(t

′)
H2(t

′)
H3(t

′)

⎞

⎠ . (34)

We recall here that the following matrix plays a role when
discussing existence and multiplicity of the solutions to the
MO equations [25, 26]:

S̃ = 1+2iτ−1TQ2Στ . (35)

This matrix differs from the S-matrix , as defined in (23),
but the determinants of the two matrices are equal

det S̃ = detS . (36)
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4.3 Asymptotic conditions on the T -matrix

The MO equations obeyed by the form factors are coupled,
homogeneous singular integral equations with a kernel lin-
ear in the T -matrix. The mathematical properties of such
equations are exposed inMuskhelishvili’s book [25]. In par-
ticular, the number of independent solutionsN is given by
the index of the integral operator, which can be expressed
in terms of the sum of the eigenphases δi(t) of the S-matrix.
For an n×n S-matrix,

n∑

1

[δj(∞)− δj(0)] =Nπ . (37)

In order to determine the form factors from the integral
equations one must therefore imposeN independent condi-
tions. In our case one has n= 3 and the S-matrix has been
constrained from experimental input up to E0 � 2.5 GeV.
We make the key assumption here that E0 is sufficiently
large, so that the asymptotic regime for the T -matrix is set
up for values of E not much larger than E0. At E =E0 the
sum of the eigenphases is

∑
δi(E0) � 3.5π. We therefore

expect the index N to be either 3 or 4. We choose to adopt
an asymptotic condition that has an index N = 4. This
will enable us to impose four conditions on the form fac-
tor. Three of these use the values at the origin of the form
factors,Hi(0). We shall discuss below how these values are
constrained by experiment. As a fourth condition, we can
enforce the behavior of f+(t) at infinity. In QCD, ignoring
flavor symmetry breaking, one should have [27, 28]

f+(−Q
2)
∣∣
Q2→∞

∼
16π
√
2αs(Q

2)F 2π
Q2

. (38)

We do not attempt to reproduce the logarithmic running
of αs, and actually use (38) with a constant value ᾱs = 0.2.
The condition (38) is then easily implemented in the form
of a sum rule:

1

π

∫ ∞

(mK+mπ)
2
dt′ImH1(t

′) = 16π
√
2ᾱs F

2
π . (39)

In the region t≥ t0 one must use a parametrization that re-
spects the unitarity of the S-matrix . For this purpose, we
write the S-matrix in exponential form,

S = exp(2iH) , (40)

where H is a real, symmetric matrix. We then define the
interpolation on the matrixH such that

lim
t→∞

H12(t),H13(t),H23(t) = 0 ,

lim
t→∞

H11(t)+H22(t)+H33(t) = 4π , (41)

using the simple interpolating function

Hij(t) =

(
t0

t

)γ (
αij+βij

(
t0

t

)γ)

+Hij(∞)

(
1−

(
t0

t

)γ)2
. (42)

The parameters αij and βij are determined so as to en-
sure continuity of Hij(t) and its first derivative at t = t0.
Consistent with the assumption made above on the set-
ting of the asymptotic regime, the parameter γ must be
larger than one: in practice, we shall take γ = 2. The con-
dition on the trace of H still leaves some freedom as to
the behavior of each diagonal element. We shall consider
a plausible scenario in which the asymptotic eigenphases
satisfy

δ1(∞) = 2π , δ2(∞) = δ3(∞) = π , (43)

where δ1 is the largest eigenphase at t = t0. The three
eigenphases are shown in Fig. 4.

4.4 Conditions at t= 0

In this section we discuss the experimental constraints
on the form factor components at t = 0. The component
H1(0) = f+(0), firstly, is well known from ChPT to very
close to 1, the result at O(p4) was computed in [29],

f+(0) = 0.977 (ChPTO(p
4)) . (44)

We note that ChPT computations at order p6 have been
performed [30], but the p6 coupling constants involved are
not yet well known. The remaining two form factor com-
ponents involve vector mesons. We shall argue that their
values at t = 0 can still be evaluated reasonably well by
appealing, in addition to chiral expansion arguments, to
a leading large Nc approximation. In the chiral limit, fla-
vor symmetry is exact, and the following relation holds
between a charged current matrix element and an electro-
magnetic current one:

〈
K∗+|ū γµ s|π0

〉
=
3
√
2

2

〈
ρ+|jµEM|π

+
〉
. (45)

Fig. 4. Eigenphases of the S-matrix: the left part of the figure
shows the region determined from experiment, the right part
(colored in yellow) shows the asymptotic interpolation region.
The asymptotic condition here is

∑
δi(∞) = 4π
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This relation implies that one can relate H2(0) and H3(0)
to the radiative width of the charged ρ meson,

|H2(0)|= |H3(0)|=

(
27

2

Γρ+→γπ+

αp3γπ

) 1
2

. (46)

Using the experimental value [14] of the radiative decay
width

Γρ+→γπ+ = 68±7 keV (47)

gives

|H2(0)|= |H3(0)|= 1.54±0.08GeV
−1 . (48)

This method does not fix the sign of H2(0). For this pur-
pose, we can appeal to a simple vector-dominance picture
applied, e.g., to the vertex function 〈γ|ūγµd|π−〉. In such
a pictureH2(0) gets related to the ABJ anomaly [31, 32],

H2(0) =−H3(0) =
Nc

8π2
1

√
2fV Fπ

� 1.50 GeV−1 .

(49)

We observe that the absolute value of H2(0) in the VMD
model is in rather good agreement with the one deduced
from experiment.
We can try to refine these estimates by taking into ac-

count the breaking of flavor symmetry to first order in the
quark masses. For this purpose, let us write down an effect-
ive Lagrangian,

L= εµναβ
{
hV tr

(
V µ{uν, fαβ+ }

)

+
a

M2V
tr
(
[V µ, uν ]

[
χ+, fαβ+

])

+
b

M2V
tr
(
{V µ, uν}

{
χ+, fαβ+

})

+
c

M2V
tr ([V µ, χ+][uν , fαβ+ ])

}
. (50)

We have used the same notation as in [16, 17] for the first
term in this Lagrangian. Flavor symmetry breaking effects
can be encoded into three independent Lagrangian terms:
this holds in the leading large Nc approximation (since
multiple trace terms are suppressed). We can then con-
strain the coupling constants hV , a, b and c by considering
the radiative decays ρ+→ π+γ,K∗+→K+γ, andK∗ 0→
K0γ. The corresponding amplitudes, computed from the
Lagrangian (50), have the expressions

A(ρ+→ π+γ) =
4
√
2

3Fπ
heffV , h

eff
V = hV +

4m2π
M2V
b (51)

and

A(K∗+→K+γ) =
4
√
2

3FK
heffV −

16
√
2

3Fπ

m2K −m
2
π

M2V
(2b−3c) ,

A(K∗ 0→K0γ) =
−8
√
2

3FK
heffV −

32
√
2

3Fπ

m2K −m
2
π

M2V
b . (52)

The following experimental results are available [14] for the
K∗ mesons radiative decays:

Γ (K∗+→K+γ) = 116±12keV ,

Γ (K∗0→K0γ) = 50±5 keV , (53)

which, together with the result (47) allows one to deter-
mine three coupling constants,

heffV = 0.0356±0.0018,

b= 0.0010±0.0015,

c= 0.0032±0.0013 . (54)

Let us now compute our form factor components from the
Lagrangian (50), obtaining

H2(0) =
4

Fπ
heffV −

16

Fπ

m2K −m
2
π

M2V
(a− b+ c) ,

H3(0) =−
4

FK
heffV −

16

Fπ

m2K−m
2
π

M2V
(a+ b) . (55)

These expressions show that H2(0) and H3(0) depend on
the symmetry breaking parameter a, which is left unde-
termined by the analysis of radiative vector meson decays.
Numerically, using the values (54) we find

H2(0) = 1.41±0.09−65.4 aGeV
−1 ,

H3(0) =−1.34±0.07−65.4 aGeV
−1 . (56)

We expect the parameter a to have the same order of mag-
nitude as the other two symmetry breaking parameters, i.e.
|a|< 10−2.

5 Solutions and comparisons
with experimental results

5.1 Solving the MO equations

The integral equations (32) and (34) can be solved numer-
ically by discretizing the integrals. This must be done
in a way that guarantees a precise evaluation of the
principal-value integrals. For this purpose, we use expan-
sions over Legendre polynomials and exact expressions for
the principal-value integrals of these. More details can be
found in [26]. One then arrives at a set of M ×M ho-
mogeneous linear ordinary equations. The Muskhelishvili
conditions on the number of solutions imply that the de-
terminant of the system must vanish (if it does not, then
the only solution would be the trivial identically vanish-
ing one) and the associated matrix must have N (with
N = 4 in our case) zero eigenvalues. In practice, because of
discretization and round-off errors no eigenvalue vanishes
exactly, but one does have N eigenvalues that are very
small in magnitude. A numerically stable way to proceed
is to enlarge the system to an (M +N)×M one by adding
N constraints on the form factors as equations and then
solve the new system using the singular value decompos-
ition method. We obtained precise results with M � 100
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and we used values ofM up to 400. Several correctness and
accuracy tests can be performed. In particular, while exact
solutions are not known for general T -matrices, the value
of the determinant of the matrix formed from N indepen-
dent solutions can be expressed in analytical form [25, 26]
in terms of S-matrix elements.

5.2 Results for τ decays

The vector form factor f+(t) can be probed using the τ de-
cay mode τ →Kπντ . The energy distribution of the Kπ
pair has the following expression, which involves f+(t) as
well as the scalar form factor f0(t):

dΓKπ(t)

d
√
t
=
V 2usG

2
Fm

3
τ

128π3
qKπ(t)

(
1−

t

m2τ

)2

×

[(
1+
2t

m2τ

)
4q2Kπ(t)

t
|f+(t)|

2 +
3(m2K−m

2
π)
2

t2
|f0(t)|

2

]
,

(57)

where the definition of f0, in terms of the form factors in-
troduced in (1) is

f0(t) =
√
2

[
fK

+π0

+ (t)+
t

m2K −m
2
π

fK
+π0

− (t)

]
. (58)

The contribution of f0 is kinematically suppressed except
for very small values of t. Let us begin by fixing the sym-
metry breaking parameter a from the integrated width.
Assuming exact isospin symmetry one has

ΓKπ = 3ΓK−π0 =
3

2
ΓK0π− . (59)

The following value for the rate is quoted by the PDG [14]:

RPDGKπ = (13.5±0.05) 10
−3 . (60)

The most recent results from the Babar and Belle collab-
orations [33, 34] tend, however, to point towards a slightly
smaller value

RBabarKπ = (12.48±0.009±0.054) 10−3 ,

RBelleKπ = (12.12±0.006±0.039) 10
−3 (61)

(assuming isospin symmetry). These results can be repro-
duced with our vector form factor3 by having the parame-
ter a in the range

a=
(
−7.0+0.7−2.0

)
×10−3 . (62)

The central value corresponds to the PDG result and the
value a=−9.0×10−3 reproduces Belle’s central figure for
the rate. The energy distribution in the decay τ →Kπντ
has been measured for the first time by the Aleph col-
laboration [36, 37]. The Belle collaboration has recently
measured the distribution in energy for the decay τ−→

3 In applications to τ decays we use for Vus the value such
that Vusf+(0) = 0.2167 quoted by the averaging group [35].

Fig. 5. Results for the energy dependence of the τ decay rate
τ →Kπντ using the vector form factor as discussed in the text
for two values of the symmetry breaking parameter a compared
with the result from Belle [34]. The contribution from the scalar
form factor f0 is shown as a dash-dot curve

K0Sπ
−ντ with considerably higher statistics [34] (approxi-

mately a thousand times larger). The Babar collabora-
tion has also presented results for the energy distribution
for τ−→K−π0ντ [33] but the data corrected for back-
ground are not publicly available. Data from Babar on
τ−→K0Sπ

−ντ have been analyzed in a thesis [38] but the
results have not yet been published.
The result from our construction is compared with the

result of Belle4 in Fig. 5 for two values of a. In addition
to the (dominant) contribution from the vector form fac-
tor, we have also included the contribution from the scalar
form factor, which we computed following [4]. The param-
eter a affects the size of the K∗(892) peak (which controls
essentially the value of the integrated decay rate) and also
the shape of the form factor in the inelastic region. We
find that it is possible to reproduce both the integrated de-
cay rate and the shape of the energy distribution above
the K∗ mass reasonably well. The solutions in the region√
t� 1.4GeV are sensitive to the assumptions made on the
S-matrix in the asymptotic domain. For instance, if we
choose an asymptotic condition with N = 3 rather than
N = 4 we cannot get agreement with experiment when√
t� 1.4 GeV by varying a.
It is instructive to compare also our result for the vector

form factor with that obtained by Belle from a fit to their
data. This comparison avoids the problem of the accept-
ance (which is taken into account in their fit) but one must
keep in mind that there is some model dependence in this
determination (a model independent separation of the vec-
tor and scalar form factors requires to analyze angular dis-
tributions). In [34] five different fits, using descriptions of
the form factors f+ and f0 à la Kühn and Santamaria [39],
have been performed. In Fig. 6 we compare our result for
the modulus of the vector form factor with the experimen-

4 The data shown have been corrected for background but not
for acceptance, which we have assumed to be approximately
energy independent.
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Fig. 6. The yellow band represents the modulus of the vector
form factor determined from a four parameter fit in [34]. It is
compared with our determination for two values of the symme-
try breaking parameter a

tal determination based on the fit that includes two vector
resonances:K∗(892) andK∗(1410) for the vector form fac-
tor and one scalar resonance: K∗0 (800) for the scalar form
factor. For clarity, we have presented our model’s result
as one curve corresponding to the best fit to the LASS
data but, obviously, one should keep in mind the uncertain-
ties of these data, which are sometimes sizable, e.g., in the
1.3 GeV region (see Fig. 2).
This comparison deserves a comment. In the K∗(892)

region one expects to observe some isospin symmetry
breaking effects since the Kπ system in τ →Kπντ is in
a charged state while the experimental data from LASS
concernKπ in a neutral state. Figure 6 shows a visible dif-
ference concerning the width, which is narrower for the
K∗+ than for the K∗0. Somewhat surprisingly, no differ-
ence is seen concerning the mass. In fact, the mass resulting
from Belle’s fit: MK∗+ = 895.47± 0.20± 0.44± 0.59 dif-
fers by about 4MeV from the mass quoted in the PDG:
MK∗+ = 891.66±0.26, which is based on hadronic produc-
tion experiments. This shift in theK∗+ mass was reported
earlier by CLEO [40] but remains to be confirmed. It could
be a similar effect to the one observed for the ρmesonmass.
The model also generates predictions for τ decays into

K∗π andKρ via vector current. The energy distribution of
the decay width for K∗π reads, in terms of the form factor
H2,

dΓK∗π
d
√
s
=

V 2usG
2
Fm

3
τ

32π3
(qK∗π)

3

(
1−

t

m2τ

)2(
1+
2t

m2τ

)
|H2(t)|

2 ,

(63)

and an exactly similar expression holds for Kρ in terms of
H3. The results from our construction are plotted in Fig. 7.
The figure shows that the K∗(1410) appears very clearly
in the K∗π channel. The τ decay into Kρ (via vector cur-
rent) is comparatively strongly suppressed. These features
reflect the constraints that we have used in the construc-

Fig. 7. Results for the energy distribution of the τ decay width
into K∗π and Kρ (rescaled by a factor of 10) via vector cur-
rent from our model, for two values f the symmetry breaking
parameter a

tion of the T -matrix based on the LASS experiments. The
results for the integrated rates are

R (τ →K∗πντ )V = (1.37±0.02) 10
−3 ,

R (τ →Kρντ )V = (4.5±3.0) 10
−5 , (64)

where the errors are estimated by simply varying the pa-
rameter a. Our result for R(τ →K∗πντ )V is seen to agree
with the one quoted by the Aleph collaboration [36, 37],

RAleph (τ →K∗(1410)ντ →Kππντ ) =
(
1.4+1.3+0.0−0.9−0.4

)
10−3 ,
(65)

which, however, is not very precise.

5.3 Some results at t= 0

For values of t near t= 0, experimental results on f+(t) can
be obtained from Kl3 decays and several new experiments
have been performed recently. One usually defines the
slope and curvature parameters from the Taylor expansion:

f+(t) = f+(0)

(

1+λ′
t

m2
π+

+
1

2
λ′′
t2

m4
π+

+ . . .

)

.

(66)

The results that we get for λ′ and λ′′ are

λ′ =
(
26.05+0.21−0.58

)
10−3 , λ′′ =

(
1.29+0.01−0.04

)
10−3 ,

(67)

where the errors, again, simply reflect the range of vari-
ation of the parameter a (the lower values correspond to
a = −9×10−3). They compare reasonably well with the
average (performed in [35]) over the recent experiments

λ′exp = (24.8±1.1) 10
−3 , λ′′exp = (1.61±0.45) 10

−3 .

(68)
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Fig. 8. Real part of the product tf+(t) resulting from our so-
lution of the MO equations compared with asymptotic QCD
prediction

Fig. 9. Illustration of the changing behaviour of the phase of
f+(t) at large t when the parameter a varies

The results (67) can also be compared with the predictions
recently presented in [9],5

λ′ = 26.2×10−3 , λ′′ = 1.37×10−3 ([9]) . (69)

5.4 Some remarks on the asymptotic region

When t→∞, the MO equations driven by the T -matrix
behaving as discussed in Sect. 4.3 can be shown to imply
that tf+(t) goes to a constant. We have constrained this
constant, via (39), in order to correctly reproduce QCD
in an average sense. Figure 8 displays the real part of the
product tf+(t) obtained from the numerical solution of the
equations. The figure also shows the asymptotic QCD ex-
pectation (analytically continued to the timelike region).

5 We converted the numerical values taking into account that
the expansion formula (66) is used in [9] with mπ = 138MeV
rather than mπ = 139.57 MeV.

One sees that tf+(t) indeed goes to a constant, but the
asymptotic behavior sets in at fairly large values of t.
A similar feature was observed in the case of the pion vec-
tor form factor, which was discussed in [41].
Another remark concerns the phase of f+(t) (let us de-

note it as φ+(t)). It is often assumed that φ+(t) should go
to π as t goes to infinity (e.g. [42, 43]), while compatibility
with asymptotic QCD simply implies that it should go to π
modulo 2π. Let us recall that if the phase of f+(t) goes to
π at infinity, f+ can be expressed in terms of its phase as
a minimal Omnès representation. In our construction, we
find that the behavior of the phase at infinity depends on
the value of a. This is illustrated in Fig. 9. For the central
value of a the phase actually goes to 3π at infinity. When
a gets slightly smaller, a transition occurs and the phase
goes to π. Again here, the asymptotic behavior is reached
for rather large values of t.

6 Conclusions

In this work, we have considered matrix elements between
light states of the strangeness changing vector current.
Such quantities are now becoming accessible to experi-
ment, with rather good precision in a rather large energy
range from hadronic τ decays. There are possible applica-
tions to certain three-body B decays as well. From a the-
oretical point of view, one can establish relations between
two-body form factors and the scattering matrix not only
at very low energy in the elastic scattering region (Wat-
son’s theorem) but also at somewhat higher energies pro-
vided that inelastic scattering is dominated by two-body
channels. This was shown to be the case for πK scatter-
ing in the P -wave by the LASS collaboration [5–7] in the
energy range E � 2.5GeV. Similar properties hold for ππ
scattering in the S-wave and also for πK scattering in
the S-wave and were used to construct scalar form fac-
tors [3, 4]. Those results, however, have not been compared
with experimental data.
We have constructed a three-channel T -matrix, which

satisfies unitarity, from fits to the large amount of data on
πK→ πK scattering in the P -wave and satisfying the ex-
perimental constraints on inelastic scattering. In the region
E ≥ 2.5GeV, one must make a plausible guess. We impose
a smooth interpolation such that the MO operator has in-
dex N = 4. The three form factors can then be determined
by solving the system of MO equations and applying four
constraints. We have used the three values at the origin,
which we have argued to be determined, making use of chi-
ral and flavor symmetries, up to one symmetry breaking
parameter a. As a fourth constraint, we used asymptotic
QCD behavior for the form factor f+.
The result of this construction for the form factor f+(t)

compares reasonably well with the recent determination by
the Belle collaboration. The agreement in the inelastic re-
gion is not quite trivial to achieve. Indeed, the K∗(1680)
resonance appears as a very large effect in πK→ πK scat-
tering while it is suppressed in the form factor. Varying
the parameter a outside of the range allowed from the in-
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tegrated τ →Kπντ rate also destroys the agreement in
the energy distribution. The result in the domain

√
t ≥

1.4 GeV is also sensitive to how the T -matrix behaves
above 2.5 GeV. In the region of the K∗(892) resonance,
there are some discrepancies. While these could be due to
isospin breaking effects, they seem to concern the width
rather than the mass of theK∗(892), which is unexpected.
Finally, we made predictions for the total rates and the en-
ergy distributions for the vector current contribution to the
τ decays τ →K∗πντ and τ → ρKντ .
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